

→ velocity viduced at y, by a filement y with +ve criatation has magnitude:

$$|V| = \frac{d\Gamma}{4\pi(y_0, y)}$$
+ve criatation means it will produce dopment at point y,

$$= \frac{1}{\sqrt{(-y_0)^2}} \frac{(y_0 - y_0)}{y_0}$$
+ve criatation means it will produce dopment at point y,

$$= \frac{1}{\sqrt{(-y_0)^2}} \frac{(y_0 - y_0)}{y_0}$$
+ve criatation means it will produce dopment at point y,

$$= \frac{1}{\sqrt{(-y_0)^2}} \frac{(y_0 - y_0)}{y_0}$$
+ve criatation means it will produce dopment of is

$$= \frac{d\Gamma}{4\pi(y_0, y_0)} = -\frac{(d\Gamma/4y_0)}{q_1(y_0, y_0)}$$
+ Ve need to determine ciritation

$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$\Rightarrow 0wr method vivolues trading each chordwise wrig section as 20 aerfoil.
$$= 1 \qquad l = p_0 V_0 \Gamma, \ d = 0 \ (d^2 Alumbed paradex)$$

$$= 1 \qquad l = p_0 V_0 \Gamma, \ d = 0 \ (d^2 Alumbed paradex)$$

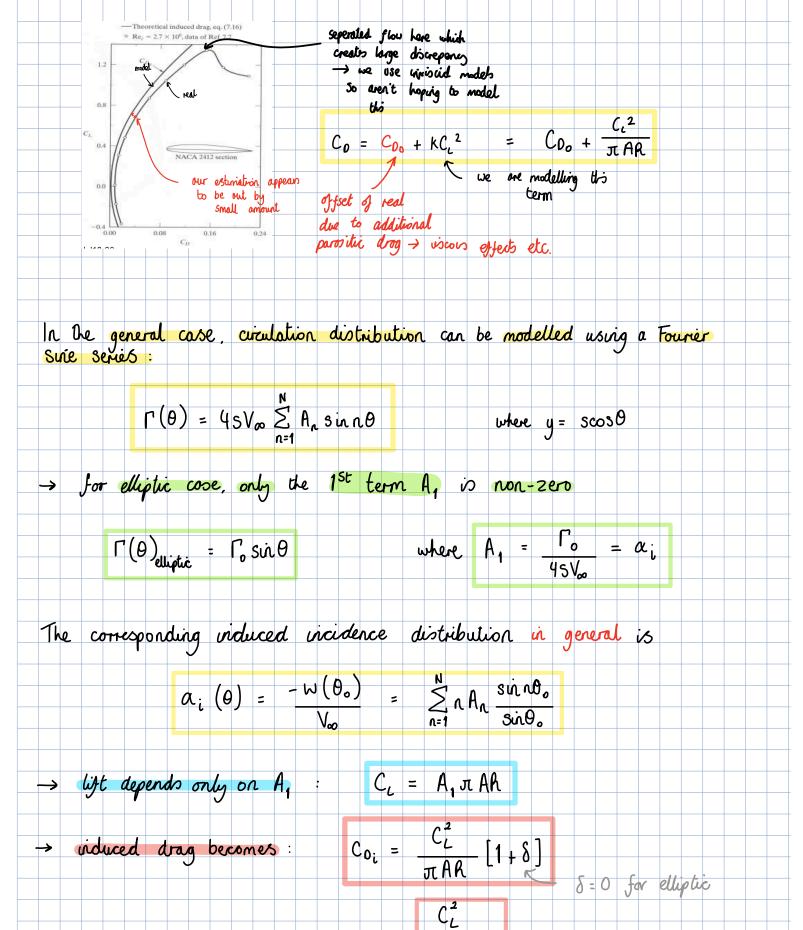
$$= 1 \qquad u = 1 \qquad v = 1 \qquad v$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

biorefore total lift is:

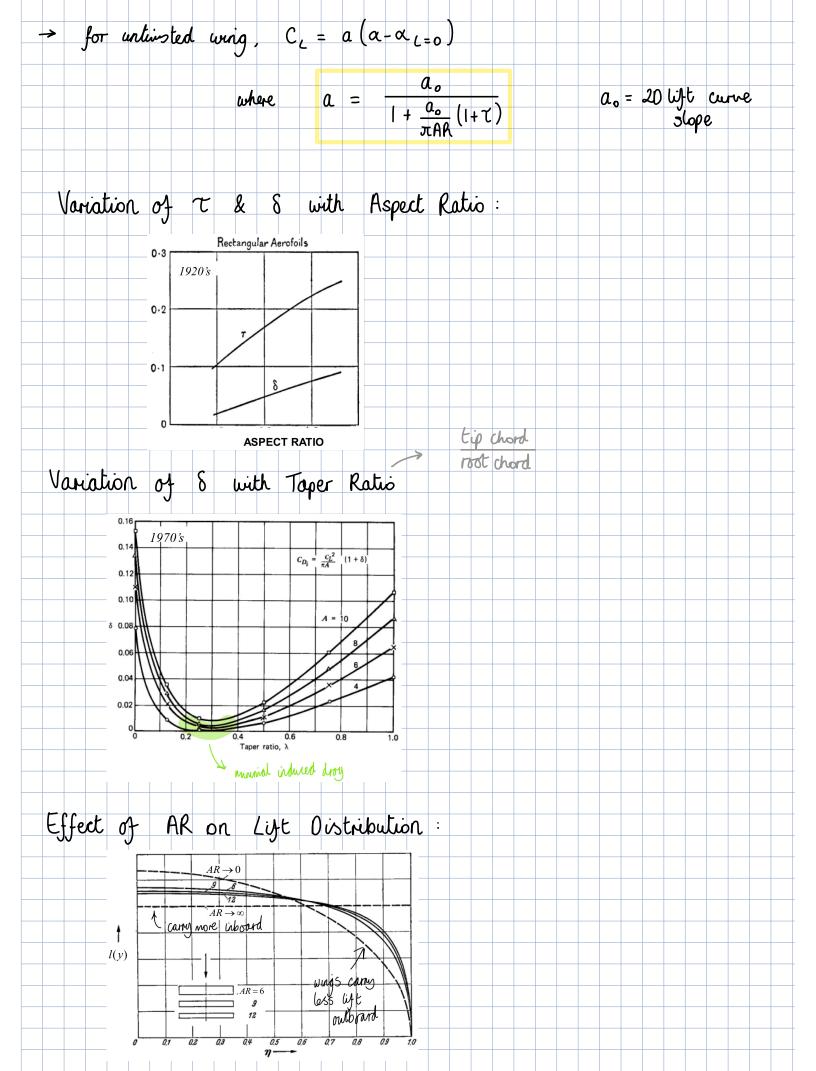
$$L = P_{0} V_{00} \int_{5}^{15} \Gamma(y) dy \text{ and } C_{L} = \frac{2}{V_{00}5} \int_{5}^{15} \Gamma(y) dy$$
Corresponding drag per unit Span is

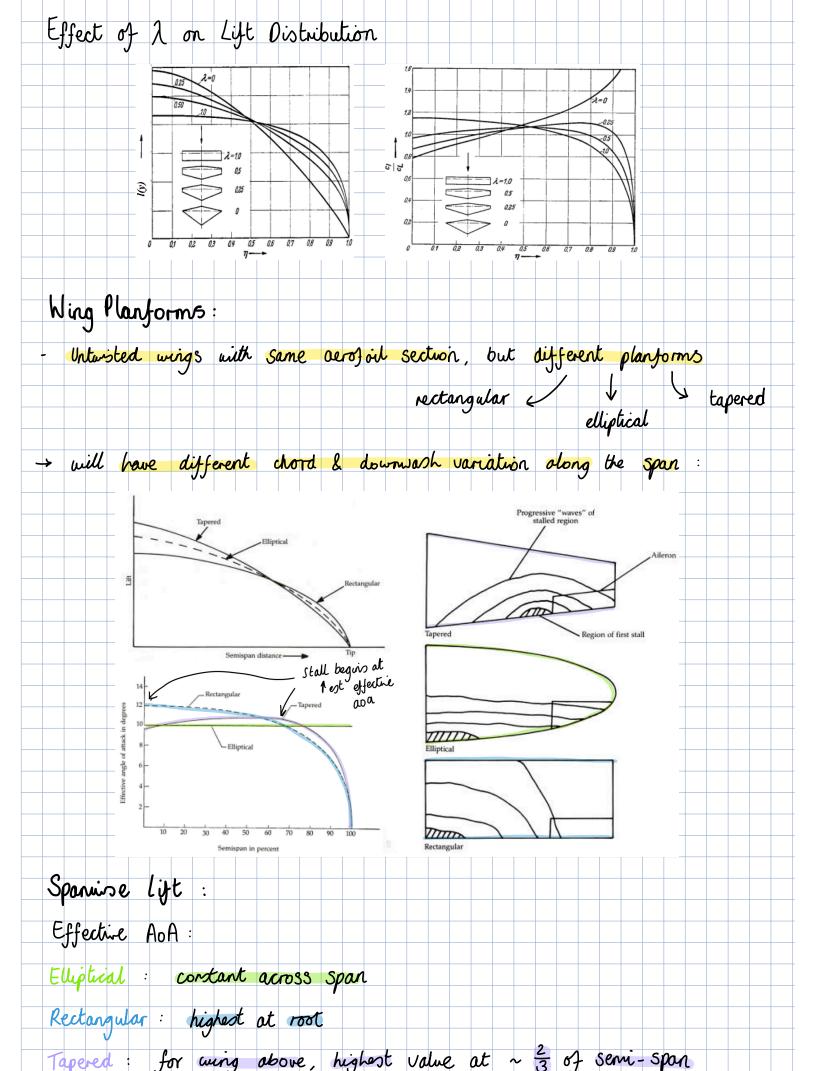
$$d [y_{0}) \approx l(y_{0}) \alpha_{1}(y_{0})$$
Corresponding drag per unit span is

$$0_{L} = p V_{00} \int_{-5}^{15} \Gamma(y) \alpha_{1}(y) dy = C_{01} = \frac{2}{V_{00}5} \int_{-5}^{15} \Gamma(y) \alpha_{1}(y) dy$$
Elliptical Circulation Distribution:


$$P_{ligging} \text{ into } \omega(y_{0}) = \frac{\Gamma_{0}}{4\pi s^{2}} \int_{-5}^{15} \frac{y}{(1 \cdot g^{2}/s^{2}} (y_{0} - y)) dy$$
Using substitution:

$$y = -s\cos\theta, dy = s\sin\theta d\theta$$


$$\omega(\theta_{0}) = \frac{\Gamma_{0}}{4\pi s} \int_{0}^{\pi} \frac{\cos\theta}{\cos\theta - \cos\theta} d\theta$$


$$\omega(\theta_{0}) = \frac{\Gamma_{0}}{4\pi s} \int_{0}^{\pi} \frac{\cos\theta}{\cos\theta - \cos\theta} d\theta$$
Total Lift for Elliptical Distribution:

$$C_{L} = \frac{s\Gamma_{0}}{V_{00}} \frac{T}{s} = \frac{\Gamma_{0}^{*}}{V_{00}} \frac{y^{2}\pi s}{s} = \alpha_{1}\pi (\frac{2}{s})^{2} = \alpha_{1}\pi \frac{b^{2}}{s} = \alpha_{1}\pi AR$$

where $e = \frac{1}{1+\delta}$ 'span efficiency factor' e=1 for elliptic

	Ellipti	isl.	:		stau	. 1	Fair	69	wen		<u>a (r</u>	055	SQ	n			_					_		
								-					4											
	Recta	rgulo	r :		Stal		at	100	t	f	nt													
-	Tapere	d	:	st	als	C	val	boan	d	pos	situ	in v	fuis	t										
->	in	oard	S	all	Ĵ	irs	rt	Ġ	de	sú	abl	e a	\$	Cre	ats	loss	100	lling	M	om	ent.			
)	out	board	sto	U	m	par	b	ail	ero	NS														
>	can	we	. (100	met	ni	tu	it	to		hav	e 🕻	ow	<i>.</i>	AoA	out	boa	rd.						_
	,		Ŭ																,			, 1,		
	\$	inte	oen	dyr	ram	LC	tw	ot	to	C)SC	04	rof	oil	SU	tions) (d	rth	lo	we	r St	tall	on	9
				_													_							
10	rduces	d D	Irag	, c)um	m	ari) :																
											for	- 01		(;	LF.	n du	cod.	dr	1.0	6	est	far		
	From ellipt	icat	pla	nfoi	m)	y.		~	,				5			0		
		و ک	el	lipt	ic a	wn	ġŚ	ha	der	- (0	prod	uce		> <mark>a</mark>	k pens	we							
-	Con	use	tay	per	rat	ioS	, t	ю (Jch	ev.	e	irid	ve	d	drag	Sin	dor	ta		llip	tical	•		
															J					/				_
ŀ	lanfo	rn I	Sel	rcti	οΛ	:		bose	d a	n	G	mpi	งกง	5e										
	J																							
1	liptical																							
J	best	indu	red	d	rog																			
X	most	exp.	ensi	ie .	,																			
		/																						
Rec	tangu	lar																						
	cheap	est	and	1	hos	fo	wo	urat	ole	St	all	. <i>0</i> 0	tte	m										
,	,					•						•												_
/	outbo	nrd.	Serti	nn	\mathcal{D}	noi																		

Topered wings can use taper ratios to achieve induced drag similar to elliptical × stall pattern not favourable () can be overcome with twist

4 but this can increase parasitic drag (pressure & skin fruction)

Winglets:

- Ain's to reduce induced drag by breaking up tip vortices

- Other benefits : -> during takeoff, wrigtip prevented from stalling first -> shorter take off -> improved aileron response -> increased stability

- They are hard to design

-> Induced drog make reduce of cost of other forms of drog > Can carse vibrations in main using (buffeting) -> can reduce you control